If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-52=-9a
We move all terms to the left:
a^2-52-(-9a)=0
We get rid of parentheses
a^2+9a-52=0
a = 1; b = 9; c = -52;
Δ = b2-4ac
Δ = 92-4·1·(-52)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-17}{2*1}=\frac{-26}{2} =-13 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+17}{2*1}=\frac{8}{2} =4 $
| -18b+2=-17b | | 4x+16+x=14 | | -z^2+2z+1=0 | | -15=0.42857143b | | X/6-2x/3=5 | | 23/5=6t | | 12x+44=90 | | /2x-5=37 | | n/2+10=7n= | | 7-2x-4x=-5 | | 10.6y=y | | -18-6k=6(1)+3k | | 6x^2=2×-1 | | 4-x-2x=-11 | | -5x–11=-5x+ | | 9x+5−2x−8=−5+7x+2x=2 | | -7n+17=-19-11n+8 | | 10/7x-23=27 | | 12f-20=8f+13+19 | | 5x+7=4x+15.x= | | 3.6-x=-6.8 | | 20=-4(3a-4) | | 16k=18.7k-3.51 | | (x-5)^3/2=64 | | -1+11j=12j-19 | | -18+8q=6q | | 0.12+n=4.16 | | 34=21+y | | 1.03+16.3d=-16.5d+10.87 | | 3(x+5)=2(3x+1) | | 3(x+5)=2(3x+1 | | -19u+1=12-20u |